

Non-communicable diseases among adolescents in Kilombero, Tanzania: Knowledge, attitudes, and practices

Philbert Balichene Madoshi¹, Theresia A. Karuhanga², Diana Kibate³

Author Affiliation:

1. St. Francis University of Health and Allied Sciences, Department of Public Health, Ifakara, Tanzania.
2. St. Francis University of Health and Allied Sciences, Department of Surgery and Trauma, Ifakara, Tanzania.
3. St. Francis University of Health and Allied Sciences, Department of Internal Medicine and Clinical Pharmacology, Ifakara, Tanzania.

Correspondence:

Philbert Balichene Madoshi
bmadoshi@gmail.com

Submitted: November 2025

Accepted: January 2026

Published: February 2026

Citation: Madoshi et al. Knowledge, attitudes, and practices on non-communicable diseases among adolescents in Kilombero, Tanzania. *South Sudan Medical Journal*, 2026;19(1):38-44 © 2026 The Author
(s) **License:** This is an open access article under [CC BY-NC](https://creativecommons.org/licenses/by-nd/4.0/) DOI: <https://doi.org/10.4314/ssmj.v19i1.7>

ABSTRACT

Introduction: Non-communicable diseases (NCDs) include heart disease, cancer, and diabetes mellitus. Globally, NCDs account for approximately 74% of all deaths. Although once considered diseases of adults, recent evidence shows that NCDs are increasingly affecting younger populations. The study assessed knowledge, attitudes, and practices related to risk factors for NCDs among adolescents in Kilombero, Tanzania.

Method: A cross-sectional study was conducted in Ifakara, Tanzania, involving 448 students from 14 secondary schools. The study was conducted for a period of nine months (January – September, 2024). Data were collected using a semi-structured questionnaire capturing knowledge and awareness of NCD risk factors. They were analysed in SPSS to determine risk ratios for developing NCDs, and chi-square tests were used to examine associations between dependent variables (NCD indicators) and independent variables (knowledge and awareness).

Results: Most participants (n = 371) were under 18 years old. Awareness was highest for diabetes mellitus (24%). Regarding perceived causes of NCDs, 26.8% attributed them to infections and 26.6% to heredity, while 10.7% did not know. Most participants (62.1%) lacked knowledge of the importance of regular blood sugar monitoring. Diabetes was ranked the most recognised NCD (24.6%), followed by cancer (20.5%) and hypertension (19.4%). BMI classifications showed underweight (16.6%), obesity (12.8%), and overweight (11.3%). Significant associations were found between NCD indicators and stress (p=0.015), alcohol use and age (p=0.025), obesity and lack of exercise (p=0.038), and geographic location (p=0.000).

Conclusion: The findings demonstrate emerging awareness of NCDs among adolescents. Strengthened efforts in awareness, prevention, and early behavioural interventions are urgently needed to reduce NCD risks in young populations, especially in low-resource settings.

Keywords: awareness, knowledge, students, non-communicable diseases, Tanzania

Introduction

Non-communicable diseases (NCDs), principally cardiovascular diseases, cancers, chronic respiratory diseases, and diabetes mellitus, account for approximately 70% of global deaths and represent one of the most pressing public health challenges worldwide.^[1,3] Cardiovascular diseases alone contribute about 32% of all NCD-related mortality, followed by cancers (17%), chronic respiratory diseases (7%), and diabetes (3%).^[1,3] These conditions are largely driven by modifiable behavioural risk factors, including tobacco use, harmful alcohol consumption, unhealthy diets, and physical inactivity, which increasingly emerge early in life.^[1,4]

In sub-Saharan Africa (SSA), the increasing prevalence of NCDs has become a major public health concern. However, the true burden remains poorly documented because of weak surveillance systems and limited population-based research.^[4,8] Adolescents in low-resource settings are particularly vulnerable to NCDs due to socio-economic barriers, limited access to accurate health information, and restricted NCD preventive health services that negatively influence their health-seeking behaviours. Since habits formed during adolescence strongly shape adults' health outcomes, early awareness of NCDs' risk factors is a crucial precedence.

Tanzania reflects this wider regional trend, with increasing rates of hypertension, diabetes mellitus, cardiovascular diseases, cancers, and obesity.^[9-11] The combined effects of obesity, DM, and hypertension significantly contribute to the country's cardiovascular disease burden.^[6,12] Although adolescents are not considered a high-risk population, emerging evidence highlights a growing prevalence of unhealthy behaviours, including physical inactivity, alcohol consumption, tobacco use, intake of sugary drinks, and poor dietary patterns.^[13] Nevertheless, adolescents continue to be underrepresented in research and policy initiatives aimed at addressing NCDs.

With over 5.4 million adolescents enrolled in secondary schools in Tanzania,^[14] this population represents an early entry point for NCDs awareness and prevention. Understanding their knowledge, attitudes, and awareness of NCD risk factors is essential for designing effective school-based interventions. This study therefore assessed adolescents' awareness of NCD risks, types, preventive behaviours, and knowledge of biometric indicators in Kilombero, Tanzania, to inform strategies that promote healthier future generations.

Method

Study area and design

This cross-sectional study was conducted in Kilombero District, Morogoro Region, Tanzania, with a population of 290,424 according to the 2022 national census.^[14] The study was conducted over nine months (January – September, 2024). It involved secondary school students from 14 schools across Ifakara Township and nearby urban, peri-urban, and rural settings. Schools were grouped by location, and students were categorised by class levels (ordinary level, advanced level), study streams (science, commerce, or arts), mode of transport to school, type of physical activity at home, dietary habits, school type (day or boarding), and ownership (public or private). In addition, the study examined adolescents' knowledge, attitudes, and practices regarding non-communicable diseases as dependent variables, while independent variables comprised contextual and behavioural factors, including household characteristics, lifestyle behaviours, school environment, and sources of health information

Sampling and data collection

Ethical approval was obtained from the St. Francis University College of Health and Allied Sciences Institutional Review Board (SFUCHAS-IRB), and permission was granted by local authorities. Study teams visited each school to introduce the study, randomly selected participants, and obtained informed consent. Trained enumerators collected anthropometric data using World Health Organization guidelines for NCD risk assessment.^[16] A semi-structured questionnaire was pretested and administered to students. Each school contributed 32 students, randomly selected from year 3 and 4 of secondary school, or from year 5 and 6 of secondary school education, where applicable. A total of 448 students participated in the study.

Inclusion and exclusion criteria

Students were eligible if they had no prior diagnosis of an NCD. Excluded participants included those with known NCDs, school dropouts, and students in years 1 and 2 of secondary education. Participation was voluntary, and only students with signed consent were included.

Data analysis

Data were coded in Microsoft Excel and analysed using SPSS version 20. Descriptive statistics summarised

participants' socio-demographic characteristics and levels of knowledge, attitudes, and practices (KAP) related to NCDs. Associations between categorical variables were assessed using chi-square tests. Variables with $p < 0.20$ at bivariate analysis were entered into multivariable logistic regression models to identify factors independently associated with adequate NCD knowledge, positive attitudes, and appropriate practices. Results are presented as adjusted odds ratios (AORs) with 95% confidence intervals (CIs) and p-values. Model fit and explained variation were assessed with a statistical significance set at $p < 0.05$.

Results

A total of 448 secondary school students aged 15–21 years from 14 schools in Ifakara participated in the study. The distribution of respondents across schools was balanced, with slightly more male than female participants. Most students were enrolled in social science subjects. The demographic data of the participants are presented in Table 1.

Knowledge of NCD types and diagnostic measures

DM was the most frequently mentioned NCD, followed by cancer and hypertension, whereas stroke was the least mentioned. A small proportion (4.7%) incorrectly identified HIV as an NCD. When asked about diagnostic units, most students lacked knowledge of blood sugar readings, with 62.1% unable to interpret glucose values. Similarly, the majority (63.2%) did not recognise body mass index (BMI) as an important indicator for overweight or obesity. Only 36.8% demonstrated awareness of BMI as a key diagnostic measure (Table 2).

Awareness of NCD risk factors, aetiology, clinical signs, and information sources

Lack of physical activity was the most frequently reported risk factor for NCDs (32.8%), followed by alcohol use (22.5%). When ranking prevalent NCDs, students identified DM as the most common (24.6%), followed by cancer (21.0%), with hypertension ranked lowest (11.8%). Regarding perceived causes of NCDs, 26.8% attributed them to infections, 26.6% to heredity, while 10.7% were unsure. Weight loss was the most recognised clinical sign (28.8%), followed by headaches (21.0%), whereas paralysis and lethargy were rarely mentioned. Media sources were the primary source of NCD information (40.6%), followed by healthcare workers (28.8%), as shown in Table 3.

Table 1. Respondents' socio-demographic characteristics

Demographic factors	Characteristics	Frequency, n (%)
Location	Peri-urban	141 (31.5)
	Rural	153 (34.2)
	Urban	154 (34.4)
Age (years)	Above 18	77 (17.2)
	Under 18	371 (82.8)
Gender	Female	215 (48.0)
	Male	233 (52.0)
Class	Ordinary level	320 (71.4)
	Advanced level	128 (28.6)
Opted subjects	Others opted subjects	80 (17.9)
	Natural sciences	107 (23.9)
	Social sciences	261 (58.3)

Table 2. The distribution of types, causes and knowledge on units to diagnose NCD

Category	NCD Type	Frequency, n (%)
Types of NCD	Cancer	92 (20.5)
	Coronary Heart Disease	65 (14.5)
	DM	110 (24.6)
	HIV - AIDS	21 (4.7)
	Hypertension	87 (19.4)
	Others	37 (8.3)
	Stroke	36 (8.0)
Category	Causes of NCD	Frequency, n (%)
Aetiology of NCD	Bewitched	94 (21.0)
	Don't know	48 (10.7)
	Infections	120 (26.8)
	Inherited	119 (26.6)
	Radiations	67 (15.0)
Category	Units used in NCD diagnosis	Frequency, n (%)
Body Mass Index	Yes	165 (36.8)
	No	283 (63.2)
Blood sugar	Yes	170 (37.9)
	No	278 (62.1)
Blood pressure	Yes	236 (53.7)
	No	212 (47.3)

Physical activity and BMI distribution

Students engaged in various physical activities after school, including cycling (20.3%), athletics (16.6%), and farming (11.3%). Most participants had a healthy BMI (20.3%), although notable proportions were underweight

(16.6%), obese (12.8%), or overweight (11.3%). BMI was compared by age, sex, education level, and school location. Healthy BMI categories were more common among students in urban schools than those in rural or peri-urban settings, as shown in Table 4.

Furthermore, multivariable logistic regression identified key factors associated with adolescents' knowledge, attitudes, and practices (KAP) regarding NCDs. Adequate NCD knowledge was significantly more common among females (AOR = 1.38; 95% CI: 1.01–1.89), adolescents aged 16–19 years (AOR = 1.67; 95% CI: 1.14–2.45), and those who had received prior NCD education (AOR = 2.08; 95% CI: 1.41–3.07). This model explained 29% of the variation in knowledge ($R^2 = 0.29$). Positive attitudes towards NCD prevention were independently associated with adequate knowledge (AOR = 2.54; 95% CI: 1.71–3.77) and physical activity (AOR = 1.89; 95% CI: 1.25–2.85), accounting for 24% of the variation ($R^2 = 0.24$). Appropriate NCD-related practices were strongly associated with positive attitudes (AOR = 2.76; 95% CI: 1.84–4.13) and adequate fruit and vegetable intake (AOR = 1.63; 95% CI: 1.10–2.43). This model explained 31% of the variation. All models showed acceptable goodness-of-fit ($p > 0.05$). In addition, the results of the multivariable analysis are displayed in Table 5.

Discussion

This study examined knowledge, attitudes, and practices regarding NCDs among secondary school students in Kilombero, Tanzania. Adolescents were chosen as the focus group because this developmental stage is pivotal in shaping lifelong behavioural patterns, making it a critical period for primary prevention of NCDs.^[1,11,17] As NCDs continue to rise across Tanzania and other low- and middle-income countries, understanding how young people perceive NCD risks is essential in guiding earlier NCD prevention initiatives.^[2–5]

Although NCDs have historically been viewed as conditions of adulthood, younger populations are increasingly becoming vulnerable due to early adoption of unhealthy behaviours, rapid urbanisation, dietary changes, alcohol and tobacco use, and physical inactivity.^[6,9,12,17] Limited access to accurate health information also contributes to this trend.^[7,31–33] This study explored students' awareness of NCD types, causes, symptoms, and risk factors, as well as their main sources of information. A school-based sample allowed for broad representation across urban, peri-urban, and rural settings, aligning with similar studies conducted in Tanzania, Kenya, and internationally.^[1,11,23]

Table 3. Respondent awareness on NCD risk factors, clinical signs and source of information

Factors considered	Category	Frequency, n (%)
Associated risk factors	Alcoholism	101 (22.5)
	Obesity	71 (15.8)
	Others	59 (13.2)
	Stress	70 (15.6)
	Lack of physical exercises	147 (32.8)
Respondent ranking	Cancer	94 (21.0)
	CHD	82 (18.3)
	Diabetes mellitus	110 (24.6)
	Hypertension	53 (11.8)
	Others	43 (9.6)
Aetiology	Stroke	66 (14.7)
	Bewitched	94 (21.0)
	Don't know	48 (10.7)
	Infections	120 (26.8)
	Inherited	119 (26.6)
Clinical signs associated	Radiations	67 (15.0)
	Blurred vision	75 (16.7)
	Headache	94 (21.0)
	Lethargy	37 (8.3)
	Don't know	76 (17.0)
Source of information	Paralysis	37 (8.3)
	Weight loss	129 (28.8)
	Taught in class	82 (18.3)
	Media (radio and social media)	182 (40.6)
	Others	55 (12.3)
	Physicians	129 (28.8)

Table 3. Relation of other health status factors of the respondents to self-medication

Variable	Category	BMI interpretation				Total
		Normal weight	Obesity	Overweight	Underweight	
Age (years)	Above 18	28	16	13	20	77
	Under 18	121	78	70	102	371
Sex	Female	77	40	39	59	215
	Male	72	54	44	63	233
School level	Advanced	43	29	27	29	128
	Ordinary	106	65	56	93	320
School location	Peri-urban	51	24	25	41	141
	Rural	41	39	30	43	153
	Urban	57	31	28	38	154

Key to BMI: Underweight <18.5, Normal weight 18.5 – 24.9, Overweight 25.0 – 29.9, Obesity ≥ 30

Table 5. The results of the multivariable analysis on the factors associated with knowledge of respondents on NCD

Risk factors	Associated factors	p - value
Stress	Age susceptibility	0.015
Alcoholism	Age susceptibility	0.025
	Course of study	0.000
Obesity	Age and lack of exercise	0.038
Lack of exercise	Location, sex and age	0.000
Gender	Female	215 (48.0)
	Male	233 (52.0)
Class	Ordinary level	320 (71.4)
	Advanced level	128 (28.6)
Opted subjects	Others opted subjects	80 (17.9)
	Natural sciences	107 (23.9)
	Social sciences	261 (58.3)

Consistent with findings from other adolescent studies, DM emerged as the most commonly recognised NCD, and students demonstrated awareness of some of its symptoms, such as weight loss and frequent urination.^[1,11,17] However, national and regional data show that cardiovascular diseases remain the leading contributors to NCD mortality in Tanzania, highlighting gaps in adolescent understanding of the broader NCD spectrum.^[3,4,12] Students identified multiple perceived causes of NCDs, including lifestyle, heredity, and infections, which reflect mixed community

knowledge and underscore the need for clearer public health messaging.^[5,10,27] Physical inactivity, poor diet, obesity, and alcohol use were commonly cited risk factors, consistent with evidence that several lifestyle risks tend to cluster rather than occur independently.^[13,22,23]

Mass media and social media were major sources of NCDs information, echoing findings from studies showing that digital platforms strongly influence adolescent health behaviours.^[7,21,29,31–33] Given adolescents' strong engagement with these platforms, integrating digital health communication into NCDs awareness programmes could enhance reach and impact. Overall, the findings highlight the urgent need to strengthen school-based NCDs education, community engagement, and youth-friendly communication strategies to reduce future NCDs risks among adolescents in Tanzania.^[5,18,24,27]

Conclusion

Adolescents in Kilombero show partial awareness of NCDs, highlighting the need for strengthened early health education. School-based NCD education, community engagement, and further research on adolescent behaviours are essential to improve understanding, promote healthier lifestyles, and support national efforts to reduce future burden of NCDs.

Study Limitations: This study relied solely on questionnaires and did not include clinical measurements to validate self-reported information. In addition, data were collected in a limited geographical area and may not represent all adolescents in Morogoro Region or Tanzania.

Despite these limitations, the study provides valuable insights for raising awareness among young people and informing policy discussions on adolescent health.

Conflict of Interest: none

Acknowledgement: We thank the Ifakara Town Council Executive Director, SFUCHAS, participating school administrations, and all students who consented to take part in this study. Their cooperation and commitment to improving community health are highly appreciated.

Informed Consent: Most participants were under 18 years; therefore, teachers acted as guardians and signed consent forms on their behalf. Students' identities were fully anonymised using unique codes known only to the researchers, and no personal information was disclosed.

References

1. Gamage AU, Jayawardana PL. Knowledge of non-communicable diseases and practices related to healthy lifestyles among adolescents, in state schools of a selected educational division in Sri Lanka. *BMC Public Health.* 2017;18(1):1–9.
2. Mayige M, Kagaruki G, Ramaiya K, Swai A. Non-communicable diseases in Tanzania: a call for urgent action. *Tanzan J Health Res.* 2012;14(2):1–12.
3. Ministry of Health, Community Development, Gender, Elderly and Children (MoHCDGEC). National Strategic and Action Plan for the Prevention and Control of Non-Communicable Diseases in Tanzania 2016–2020. 2016. <https://www.moh.go.tz>
4. Mboera LEG, Kishamawe C, Rumisha SF, et al. Patterns and trends of in-hospital mortality due to non-communicable diseases and injuries in Tanzania, 2006–2015. *PLOS Glob Public Heal.* 2023;3(7):e0000281. <http://dx.doi.org/10.1371/journal.pgph.0000281>.
5. Ndumwa HP, Kessy AT, Amani DE, et al. Mitigating the Rising Burden of Non-Communicable Diseases through Locally Generated Evidence-Lessons from Tanzania. *Ann Glob Heal.* 2023;89(1):1–12.
6. Mawaw PM, Yav T, Mukuku O, Lukanka O, et al. Prevalence of obesity, diabetes mellitus, hypertension and associated risk factors in a mining workforce, Democratic Republic of Congo. *Pan Afr Med J.* 2017;28:1–15.
7. Thandapani KAK, Adomako AD, Ramesh S. Non-Communicable Diseases and Social Media: A Heart Disease Symptoms Application. *J Inf Knowl Manag.* 2021;20(4).
8. Ahmed R, Robinson R, Mortimer K. The epidemiology of noncommunicable respiratory disease in sub-Saharan Africa, the Middle East, and North Africa. 2017; 29(June):203–11.
9. Rawal L, Biswas T, Khandker N, Saha S, Chowdhury M, Khan A. Non-communicable disease (NCD) risk factors and diabetes among adults living in slum areas of Dhaka, Bangladesh. *PLoS ONE;* 2017.12(10): 1–15. <https://doi.org/10.1371/journal.pone.0184967>
10. Ruhembe C, Mosha T, Nyaruhucha C. Risk Factors Associated with Elevated Blood Glucose Among Adults in Mwanza City, Tanzania. *Tanzania J Agric Sci.* 2015;14(2):90–100.
11. Kiplagat SJ, Steyl T, Wachira LJ, Phillips J. Knowledge of non-communicable diseases among adolescents in Uasin Gishu County, Kenya. *Afr Health Sci.* 2023;23(2):589–96.
12. Galson SW, Staton CA, Karia F, Kilonzo K, et al. Epidemiology of hypertension in Northern Tanzania: A community-based mixed-methods study. *BMJ Open.* 2017;7(11):1–10.
13. Atorkey P, Byaruhanga J, Paul C, et al. Multiple health risk factors in vocational education students: A systematic review. *Int J Environ Res Public Health.* 2021;18(2):1–17.
14. United Republic of Tanzania (URT). Census 2022. <https://www.nbs.go.tz/statistics/topic/census-2022>
15. Oliveira MA, Luiza VL, Tavares NUL, Met al. Access to medicines for chronic diseases in Brazil: A multidimensional approach. *Rev Saude Publica.* 2016;50(suppl 2):1–13.
16. Bonita R, Strong K, De Courten M. From surveys to surveillance. *Rev Panam Salud Publica/Pan Am J Public Heal.* 2001;10(4):223–5.
17. Rahamathulla MP, Mohammed Sha M. Frequency and awareness of risk factors of non-communicable diseases among university students in saudi arabia. *Pakistan J Med Sci.* 2020;36(4):740–5.
18. United Republic of Tanzania, Ministry of Health.

Strategic and Action Plan for the Prevention and Control of Non-Communicable Diseases in Tanzania 2016–2020. Dar es Salaam: Ministry of Health, Community Development, Gender, Elderly and Children; 2016.

19. World Health Organization. Non Communicable Disease Progress Monitor 2022. 2022; <https://www.who.int/publications/i/item/9789240047761>.

20. World Health Organization. Non Communicable Disease Progress Monitor 2022; <https://www.who.int/publications/i/item/9789240047761>.

21. Jordan SE, Hovet SE, Fung ICH, et al. Using twitter for public health surveillance from monitoring and prediction to public response. *Data*. 2019;4(1):1–20.

22. Teh CH, Teh MW, Lim KH, et al. Clustering of lifestyle risk behaviours and its determinants among school-going adolescents in a middle-income country: A cross-sectional study. *BMC Public Health*. 2019;19(1):1–10.

23. Shayo FK. Co-occurrence of risk factors for non-communicable diseases among in-school adolescents in Tanzania: An example of a low-income setting of sub-Saharan Africa for adolescence health policy actions. *BMC Public Health*. 2019;19(1):1–8.

24. Shayo EH, Murdoch J, Kiwale Z, et al. Management of chronic conditions in resource limited settings: multi stakeholders' perception and experiences with receiving and providing integrated HIV, diabetes and hypertension services in Tanzania. *BMC Health Serv Res*. 2023; 23(1): 1–13. Available from: <https://doi.org/10.1186/s12913-023-10123-4>

25. Njiro BJ, Kisonga R, Joachim C, et al. Epidemiology and treatment outcomes of recurrent tuberculosis in Tanzania from 2018 to 2021 using the National TB dataset. *PLoS Negl Trop Dis*. 2024 Feb 1;18(2):1–19.

26. Pradeepa R and Mohan. Symposium Recent advances and challenges in the management of retinoblastoma Globe - saving Treatments. *BMC Ophthalmol*. 2017;17(1):1.

27. Pallangyo P, Komba MS, Mkojera ZS, et al. Perspectives for the Prevention of Noncommunicable Diseases in Tanzania: Is Knowledge Translated into Practice? *Risk Manag Healthc Policy*. 2024;17(May):1177–86.

28. Dixit K, Biermann O, Rai B, Aryal TP, et al. Barriers and facilitators to accessing tuberculosis care in Nepal: a qualitative study to inform the design of a socioeconomic support intervention. *2021*;1–12.

29. Kumarasamy AKT, Asamoah DA, Sharda R. Non-Communicable Diseases and Social Media: A Heart Disease Symptoms Application. *J Inf Knowl Manag*. 2021;20(4).

30. Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. *Diabetes Res Clin Pract*. 2019;157:107843: <https://doi.org/10.1016/j.diabres.2019.107843>.

31. Tabassum R, Froeschl G, Cruz JP, et al. Untapped aspects of mass media campaigns for changing health behaviour towards non-communicable diseases in Bangladesh. *Global Health*. 2018;14(1):10–3.

32. Fung ICH, Tse ZTH FK. The use of social media in public health surveillance. *West Pac Surveill Response J*. 2015;6(2):3–6.

33. Lui CW, Wang Z, Wang N, et al. A call for better understanding of social media in surveillance and management of noncommunicable diseases. *Heal Res Policy Syst*. 19(1):21–40.